

Debugging Petascale HPC
Applications

Blue Waters User Workshop 2013

Objectives

● Raise awareness
● Debugging in general
● Allinea DDT in particular

● Enhance dexterity
● Allinea DDT in particular

Print statement debugging?

● The first debugger: print
statements
● Each process prints a

message or value at defined
locations

● Diagnose the problem from
evidence and intuition

● A long slow process
● Analogous to bisection root

finding

● Broken at modest scale
● Too much output – too many

log files

x

f(x)

Line
Number

Segfault
Line

Print
Statements

"Debugging is twice as hard as writing the code in
the first place. Therefore, if you write the code as

cleverly as possible, you are, by definition, not
smart enough to debug it."

Brian Kernighan

Bugs in Practice

Some Types of Bugs

● Bohr bug
● Steady, dependable bug

● Heisenbug
● Vanishes when you try to debug (observe)

● Mandelbug
● Complexity and obscurity of the cause is so great that it appears

chaotic

● Schroedinbug
● First occurs after someone reads the source file and deduces

that it never worked, after which the program ceases to work

A `New' Vernacular for Bugs

● Defect
● An incorrect program code

– A bug in the code

● Infection
● An incorrect program state

– A bug in the state

● Failure
● An observable incorrect program behaviour

– A bug in the behaviour

Zeller A., “Why Programs Fail”, 2nd Edition, 2009

TRAFFIC

● Debugging
● Transforming a broken program into a working one

● How?
● Track the problem
● Reproduce
● Automate - (and simplify) the test case
● Find origins – where could the “infection” be from?
● Focus – examine the origins
● Isolate – narrow down the origins
● Correct – fix and verify the testcase is successful

Zeller A., “Why Programs Fail”, 2nd Edition, 2009

How to Focus and Isolate

● A scientific process?
● Hypothesis, trial and observation, ...

● Requires the ability to understand what a program is doing
● Printf
● Command-line debuggers
● Graphical debuggers

● Other options
● Static analysis
● Race detection
● Valgrind
● Manual source code review

'I' is for Isolate

● Can the issue be isolated?
● Reduce the process count, data size or some other factor (eg.

Time)
● Simplify the problem?

● Simplifying is not always an option
● Often requires reduced data set – the large one may not fit
● Smaller data set may not trigger the problem
● Does the bug even exist on smaller problems – or is it too

unlikely to occur?

● Are there quick ways to just “debug”?

What are Debuggers?

● Tools to inspect the insides of an application whilst it is running
● Ability to inspect process state

– Inspect process registers, and memory
– Inspect variables and stacktraces (nesting of function calls)
– Step line by line, function by function through an execution
– Stop at a line or function (breakpoint)
– Stop if a memory location changes

● Ideal to watch how a program is executed
– Less intrusive on the code than printf
– See exact line of crash – unlike printf
– Test more hypotheses at a time

How Debuggers Work

● Multiple methods of operation/implementation
● Interpreted interactive environments – Ruby, Perl, etc.

– Everything is under control of the implementation – easy access to the
state of the system

– Relatively easy extension to any interpreter
● Virtual/managed environments – eg. Java

– Public protocols hook into the virtual machine (ie. JDWP API)
● Insert breakpoint, inspect classes and data

● Native executables
– A harder challenge – binaries run wild under operating system control

● Examples: Eclipse, DDT, GDB, Allinea DDT

Debugging Parallel Applications

● The same need: observation, control, ...
● A complex environment – with complex problems

– More processes, more data
– More Heisenbugs – MPI communication library introduces

potential non-determinism
● Few options ...

– Cannot use printf or command line debuggers
● Some bugs only occur at scale

– Need to handle thousands of threads/processes
– Needs to be fast to use and easy to understand

● The same need: observation,
control, ...

● A complex environment –
with complex problems

– Explicit data transfer between
host and GPU

– Hierarchy of memory levels

– Grid/block layout and thread
scheduling

– Synchronization

– Massively fine-grained parallel
model

● Debugging options ...

Debugging Parallel GPU Applications

Fixing the everyday crash

● The typical application crash or early
exit:
● Run your program in the debugger

 ddt {application} {parameters}
● Application crashes or starts to exit

● Where did it happen?
● Allinea DDT merges stacks from

processes and threads into a tree
● Leaps to source automatically

● Why did it happen?
● Some faults evident instantly
● For others look deeper – at variables

Allinea DDT: Proved to the extreme

● Scalability by design
● User interface that scales
● High performance tree

architecture

● Proven performance at
Petascale
● Measured in milliseconds
● Routine use at 100,000+ cores

● 300,000+ cores
● Easy to use
● Scalable GUI

Allinea DDT: More than debugger

● Integrated automated
detection of bugs
● Static analysis
● Memory leaks and errors

● Open plugin architecture
● MPI checking tools

● Offline mode - debug in
batch mode

Demos

● Crashes
● Memory errors and

leaks
● Deadlocks

● Threads
● MPI

http://www.allinea.com/downloads/ddt_training.tar.gz

● Breakpoints and
watchpoints

● Offline debugging
● Incorrect results
● GPU support

http://www.allinea.com/downloads/ddt_training.tar.gz

OpenMP Debugging Considerations

● Threads only created when parallel region reached
● Applies to some OpenMP libraries

● Can't step into a parallel region
● Synchronize threads in parallel region then

– Step threads together
– Run to a specific line

● Can't step out of a parallel region
– Step threads together inside parallel regions
– Run to specific line to exit parallel region

OpenMP Debugging Considerations

● Outside parallel regions
● Disable “Step Threads Together”

● Control threads individually
● Use “Focus on current: Thread” feature

● Shared OpenMP variables may appear twice in
Locals window
● Side effect of introducing parallelism

OpenMP Debugging Considerations

● Parallel regions displayed as new functions in
stack views?
● Implemented as automatically-generated “outline”

functions

● Stepping often behaves unexpectedly inside
parallel regions

● Some compilers optimize parallel loops
● Ignore options specified on the command line

The old quick way to debug...

● Logging – printf and write
● If you have good intuition into the problem

– Edit code, insert print, recompile and re-run
– Slow and iterative

● Logs grow too quickly
– Hard establish real order of output of multiple processes
– Unscalable

No longer a very effective way to solve bugs

So, can we use a real debugger?

Why debug at scale?

● Increasing job sizes leads to unanticipated errors
● Regular bugs

– Logic issues and control flow
– Data issues from larger data sets – eg. garbage in..., overflow

● Increasing probability of independent random error
– Memory errors/exhaustion – “random” bugs!
– System problems – MPI and operating system

● Coded boundaries
– Algorithmic (performance) or hard-wired limits (“magic numbers”)

● Unknown unknowns

● Machine time is too expensive to ignore failures!

How to Make a Petascale Debugger

● A control tree gives scalability
● Ability to send bulk commands and

merge responses
● 100,000 processes in a depth 3 tree

● Compact data type to represent sets of
processes
● eg. For message envelopes
● An ordered tree of intervals, or a bitmap?

● Develop aggregations
● Merge operations are key: not everything

can/should merge losslessly
● Maintain the essence of the information:

eg. min, max, distribution

Extreme-Scale Endorsements

“My group routinely debugs parallel code at over 100,000 processes
using Allinea DDT. No other debugger can even come close to its
performance, so obviously it’s a hit with users.”

– Dr Richard Graham, Oak Ridge National Laboratory

“Allinea's experience and tools will make a big impact in the speed at
which scientists can complete their research. We are looking to Allinea
to help teams become more productive by more quickly moving codes
to the new technologies, and improve the performance of their codes
at the full scale of the entire system.”

– Dr Bill Kramer, Deputy Project Director of Blue Waters

Extreme-Scale Endorsements (2)

“This tool has already proven its value in the migration of
our early science applications onto Mira,” said Kalyan
Kumaran, who manages ALCF’s applications
performance engineering team. “These projects cover
the range of scientific fields, numerical methods,
programming models and computational approaches
expected to run on Mira, so accurate debugging is
critical.”

Allinea Strengths

● Focus
● Tools for HPC developers

● Design
● User experience
● Architecture

– Integrated
– Interoperable
– Scalable

About Allinea

● HPC development tools company
● Flagship product Allinea DDT

– Now the leading debugger in parallel computing
– The scalable debugger

● Record holder for debugging software on largest machines
● Production use at extreme scale … and desktop

– Wide customer base
● Blue-chip engineering, government and academic research
● Strong collaborative relationships with customers and partners

● Announced product Allinea MAP
– The profiler you'll actually want to use!

Allinea DDT - Debugging++

● Productively debug your parallel code
● Completely understand your parallel code

● Interact with data, algorithms, codes, programs and
applications in real time

● Develop parallel your code from scratch
● Port parallel algorithms, codes, programs and

applications to X
● Scale your algorithms, codes, programs and

applications

● 2007 – introduction of the CUDA programming model
● Powerful, efficient and C-based
● Understood and adopted by new groups of experts
● Existing codes modified to extract SIMD parallelism and

introduce CUDA kernels
● Performance of codes is optimized

– Overlapping device (GPU) and host (CPU), or
– Rearranging memory usage inside device (GPU)

● The first CUDA bug is created ...

The First CUDA Bug

Embracing GPUs

● GPUs – a rival to traditional processors
● Great price/performance ratios
● Offerings from AMD and NVIDIA

● New languages, compilers, standards
● CUDA, OpenACC, OpenCL, ...

● HPC developers need to consider
● Data transfer
● Multiple memory levels
● Grid/block layout and thread scheduling
● Synchronization

● Bugs are inevitable

Processing flow

• The first graphical debugger for NVIDIA CUDA

‒ Simple and easy to use

‒ As easy as debugging ordinary (i.e., non-GPU) code

• Core debugging capability

‒ Breakpoints

‒ Stepping warps

‒ Viewing data and thread stacks within the GPU

• Supports advanced features

‒ CUDA memcheck – memory debugging for CUDA

Allinea DDT and CUDA
Core Debugging Capabilities

Introducing OpenACC

● SC11 (Seattle, November 2011)
● CAPS, Cray, NVIDIA and PGI

announce new standard for
accelerator programming
– Easily realize the power of GPU

computing
– A common standard

● Allinea supports debugging Cray
OpenACC compiler
– Others to follow

Debugging OpenACC at Scale!

● Large Cray XK6 systems in (or
almost in) place
● ORNL Titan

– MPI debugging proven at 220,000
CPU cores

● Targeting 300,000 CPU cores

– MPI-OpenACC hybrid codes
expected to scale similarly

● NCSA Blue Waters
– Targeting 380,000 CPU cores

● Allinea DDT chosen for both
systems – at scale

https://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/L2P_Scott_0.pdf

https://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/L2P_Scott_0.pdf

http://agilemanifesto.org/

Agile Manifesto: 12 Principles

● Customer satisfaction by rapid delivery of useful software
● Welcome changing requirements, even late in development
● Working software is delivered frequently (weeks rather than months)
● Working software is the principal measure of progress
● Sustainable development, able to maintain a constant pace
● Close, daily co-operation between business people and developers
● Face-to-face conversation is the best form of communication (co-location)
● Projects are built around motivated individuals, who should be trusted
● Continuous attention to technical excellence and good design
● Simplicity- The art of maximizing the amount of work not done - is essential
● Self-organizing teams
● Regular adaptation to changing circumstances

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	CUDA Programming Where do bugs come from ?
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	CUDA Debugging Existing options
	Slide 45
	Allinea DDT and CUDA Successful rework
	Allinea DDT and CUDA Core debugging capabilities
	Allinea DDT and CUDA Seamless integration within the GUI
	Allinea DDT and CUDA Kernel progress
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

